Crystal Structure of Methyl α-D-Galactopyranoside Monohydrate

By B. M. Gatehouse and B. J. Poppleton *
Chemistry Department, Monash University, Clayton, Victoria 3168, Australia

(Received 9 June 1970)

Abstract

Methyl α-D-galactopyranoside monohydrate crystallizes in the orthorhombic space group $P 2_{1} 2_{1} 2_{1}$ with cell dimensions $a=6 \cdot 130, b=7 \cdot 486, c=21 \cdot 202 \AA$. The structure was solved using the tangent formula and refined by full-matrix least-squares to a final reliability index of 0.032 . Bond lengths and angles are normal with the primary hydroxyl group in the gauche-trans arrangement; the ring conformation is the expected chair form ($C 1$). The ring oxygen atom participates in the hydrogen bonding scheme which also contains a bifurcated hydrogen bond. The environment of the water molecule comprises a planar array of oxygen atoms which approximate a square.

Introduction

In a systematic study of the Fischer method of preparation of the methyl D-galactopyranosides Frahn \& Mills (1965) report that the α isomer crystallizes only as the monohydrate, with a melting point which is dependent on its previous treatment and the method of measurement. Thus a large sample of the pure material, obtained by crystallization from water, when sealed in a glass capillary melted over the range $107-113^{\circ} \mathrm{C}$. On a Fischer-Johns hot plate the corresponding range was $96-99^{\circ} \mathrm{C}$. Dehydration of a powdered sample at $83^{\circ} \mathrm{C}$ under 2 mm pressure in the presence of phosphoric oxide caused partial fusion without changing the melting point. No fusion occurred if the temperature of dehydration was reduced to $61^{\circ} \mathrm{C}$ but the anhydrous residue then had a higher and sharper melting point at $116-116 \cdot 5^{\circ} \mathrm{C}$. Exposure of the residue to air resulted in a weight gain corresponding to reformation of the monohydrate but the melting point remained unaltered at $116-116.5^{\circ} \mathrm{C}$.

This paper reports the crystal structure determination of methyl α-D-galactopyranoside monohydrate which was undertaken to assist in understanding the above behaviour and to provide information on the nature of the interactions between water and carbohydrates.

Crystal data

Methyl α-D-galactopyranoside monohydrate,

$$
\mathrm{C}_{7} \mathrm{H}_{14} \mathrm{O}_{6} \cdot \mathrm{H}_{2} \mathrm{O}
$$

M.W. 212 .21
$a=6 \cdot 130$ (1) \AA
$b=7.486$ (1) \AA
$c=21.202$ (3) \AA
$D_{x}=1.448 \mathrm{g.cm}^{-3}, Z=4$
$\mu=11.48 \mathrm{~cm}^{-1}$
Systematic absences: $h 00$ for h odd, $0 k 0$ for k odd and $00 l$ for l odd.
Space group: $P 2_{1} 2_{1} 2_{1}$

[^0]Cell dimensions were measured using a Picker diffractometer and agree within 0.6% with those reported by Cox, Goodwin \& Wagstaff (1935) although the a and c axes have been interchanged in the present work.

The crystal had forms $\{001\},\{201\}$ and $\{011\}$ with maximum dimensions in the directions [100], [010] and [001] of $0.309,0.750$ and 0.466 mm respectively.

Experimental

A suitable crystal was selected from a batch crystallized from a warm solution in water, and mounted for rotation about the b axis on a Picker four-circle diffractometer. A full set of data to $\sin \theta=0.9$ using $\mathrm{Cu} K \alpha$ radiation was collected in the $\theta-2 \theta$ scanning mode with angle limits of 1° on each side of the reflexion $\left(\alpha_{1}, \alpha_{2}\right)$ and with 20 sec background count times. The general reflexion 333 was measured throughout the data collection at fifty-reflexion intervals as a monitor of crystal stability. A decrease to 95% of the initial intensity occurred at a steady rate over the collection period and all intensities were corrected for this deterioration of the crystal by the data reduction program. The data were collected in a sequence which was not systematic with h, k, l, or $\sin \theta$ but depended solely on the minimization of the shifts of setting angles between reflexions.

No correction was made for absorption.
Calculations were executed on the C.S.I.R.O. CDC 3200 and 3600 computers. The major programs used were modified versions of the full-matrix least-squares of Busing, Martin \& Levy (1962), the Fourier of White (1965) and the direct phasing (D.P.) series of Hall (1968). The operations of the D.P. programs have been described by Oh \& Maslen (1968).

Scattering curves for all atoms were those quoted in International Tables for X-ray Crystallography (1962).

Determination and refinement

The structure was solved by direct phasing methods employing the tangent formula of Karle \& Hauptman (1956).

The observed structure factors were placed on an approximate absolute scale using a Wilson plot; the scale factor so obtained was within 1% of that finally obtained by equating the sum of the observed and calculated structure factors. The same plot gave a temperature factor of $2 \cdot 82 \AA^{2}$. These constants were used to generate a list of normalized structure factors the statistics for which are compared with idealized centric and non-centric cases in Table 1.

Table 1. E statistics

	Observed	Non- centric	Centric
Mean $\|E\|$	0.855	0.886	0.798
Mean E^{2}	1.037	1.000	1.000
Mean $\left\|E^{2}-1\right\|$	0.895	0.736	0.968

After an initial false start a solution was finally achieved with the origin and enantiomorph defining phases given in Table 2 in which n refers to the position of the reflexion in a list sorted on $|E|$. The 3,3,12 reflexion ($n=2$) was then assigned arbitrary starting phases of $0 \cdot 0, \pi / 2, \pi$ and $3 \pi / 2$ in four phasing runs using the 126 reflexions for which $|E|>1 \cdot 49$. The Σ_{1} expression of Karle \& Hauptman (1956) had given a phase of $0 \cdot 0$, with high probability, for the $060(n=12)$ reflexion. However, it was not used as a starting phase but only to check the phasing process.

Table 2. Origin and enantiomorph defining phases

n	Reflexion	$\|E\|$	Phase	Type
8	209	2.66	$\pi / 2$	Origin
21	120	2.30	$\pi / 2$	OOrigin
26	072	2.21	$\pi / 2$	Origin
23	305	2.28	$\pi / 2$	Enantiomorph

One set of phases ($\varphi_{3,3,12}=\pi / 2$) was significantly better than the other three; a check at intervals of $\pi / 4$ for the starting phase confirmed this conclusion. The phas-

Fig.1. Individual atom isotropic temperature factors vs. radial distance of the atom from the geometric centre of the pyranose ring.
ing was then extended to include the 208 reflexions for which $|E|>1 \cdot 20$, equivalent to approximately fifteen reflexions per non-hydrogen atom in the asymmetric unit. These had a reliability index $R_{E}=\Sigma| | E_{\text {obs }} \mid-$ $k\left|E_{\text {calc }}\right| / \Sigma\left|E_{\text {obs }}\right|$ of 0.15 with all reflexions phased and with each $\left|E_{\text {cale }}\right|>1 \cdot 0$. An E map calculated on the basis of these phases revealed clearly both sugar and water molecules. The reliability index of the initial set of structure factors calculated with the positional parameters from the E map, and the scale and isotropic temperature factors given above was 0.19 .

A full-matrix least-squares refinement of positional parameters reduced the conventional reliability index R to 0.13 and a further cycle refining both positional and individual isotropic temperature factors yielded an R of 0.093 . A difference Fourier synthesis then showed the hydrogen atoms although one, attached to the water molecule was subsequently found to be in error. A third cycle varying only heavy-atom positions and individual temperature factors reduced R to 0.076 . At this point the atoms were grouped according to their temperature factor as shown in Table 3. When the individual temperature factors were plotted against distance of the corresponding atom from the geometric centre of the pyranose ring the pattern shown in Fig. 1 emerged. The molecule clearly appears to be vibrating as a rigid body with a residual translational component of approximately $1.4 \AA^{2}$; this feature was used to assign temperature factors to the various hydrogen atoms in in the structure.

Table 3. Atoms grouped according to isotropic temperature factors

		Type	$B_{\text {iso }}$	Mean
I	C(1)	Ring atoms	2.21	
	C(2)		$2 \cdot 25$	
	C(3)		2.28	$2.27 \AA^{2}$
	C(4)		$2 \cdot 42$	
	C(5)		$2 \cdot 24$	
	O(5)		$2 \cdot 26$	
II	$\mathrm{O}(1)$	Ring atom substituents	2.61	
	$\mathrm{O}(2)$		$3 \cdot 12$	
	O (3)		$2 \cdot 81$	$2 \cdot 88 \AA^{2}$
	$\mathrm{O}(4)$		3.01	
	C(6)		$2 \cdot 87$	
III	C(7)	Appendages	3.60	$3 \cdot 55 \AA^{2}$
	O(6)		$3 \cdot 50$	
IV	$\mathrm{O}(W)$	Isolated	$5 \cdot 30$	$5 \cdot 30 \AA^{2}$

Several cycles of least-squares, with unit weights, varying the heavier atom positions and their anisotropic thermal parameters with relocation of one hydrogen atom as mentioned above gave the final agreement index of 0.032 at which level parameter shifts were equal to, or less than, the estimated standard deviations. The corresponding difference electron density map contained a number of features with peak heights of $0.15-$ 0.17 e. \AA^{-3} which could be attributed to the bonding electrons because of their character and position with
respect to the carbon and oxygen atom sites. Details other than these were less than $0 \cdot 10$ e. \AA^{-3}.

The final list of structure factors, Table 4, indicates that the affects of absorption and secondary extinction are small; thus in the latter case the four reflexions 004, 013, 103 and 120, each of which required four attenuators, show no pronounced systematic difference between $\left|F_{\text {obs }}\right|$ and $\left|F_{\text {calc }}\right|$, and a similar comment applies also to the eight reflexions for which three attenuators were necessary.

The final atom position and thermal parameters are listed in Table 5. Estimated standard deviations (e.s.d.) of the heavier atom coordinates are isotropic with values of $0.002 \AA$ for the oxygen atoms and $0.003 \AA$ for the carbon atoms. Therefore the approximate e.s.d.'s of the bond lengths and angles are $0.005 \AA$ and 0.3° respectively.

The e.s.d. of the mean-square displacements of the heavier atoms are about $0.002 \AA^{2}$.

Description of the structure and discussion

In a crystal of the monohydrate, methyl α-D-galactopyranoside has the generally expected chair conformation ($C 1$) depicted in Fig. 2. The primary hydroxyl oxygen atom, $O(6)$, is gauche to the pyranose ring oxygen atom, $\mathrm{O}(5)$, and trans to $\mathrm{O}(4)$, and therefore in this respect the structure is similar to those of a number of other sugars (Sundaralingam, 1968). At the same time the carbon atom, $\mathrm{C}(7)$, of the methyl group is gauche
to $\mathrm{O}(5)$ and trans to $\mathrm{C}(2)$. Thus these two groups effectively shield the ring oxygen atom from an equatorial hydrogen bonding approach but not an axial approach, as discussed below.

Within the unit cell the geometric centre of the pyranose ring is positioned at $x / a=0.3174, y / b=0.6443$ and

Fig.2. Molecular configuration and atom designation; drawn by ORTEP (Johnson, 1965).

Table 4. Observed and calculated structure factors
F_{0} and F_{c} are $\times 10$.

* Unobserved reflexions signal/noise ≤ 1.5.

 \cdots

 -
 (.)..
 $\cdots, \ldots-1 . .$.
 $\cdots \cdots$,

 :

 ,
 ……........ :
 : ․-.… $\because-1 . . .$. ©
 $\cdots \cdots$, $=\square-$ -

$z / c=0.3473$ with the primary hydroxyl group within $1.86 \AA$ of a screw axis at $x, \frac{1}{4}, \frac{1}{2}$. The latter, with the water molecule, forms a tightly hydrogen-bonded column parallel to the x axis. The methyl group is similar, being within $1-20 \AA$ of a screw axis at $x, \frac{3}{4}, \frac{1}{2}$ and forms a second column parallel to the first in which only van der Waals forces are involved. The mean plane through the six atoms of the pyranose ring is given by (1) which shows it to be very nearly perpendicular to the long, z, axis of the cell. The deviations of the atoms from the plane are: $\mathrm{C}(1),-0.206 ; \mathrm{C}(2), 0.203 ; \mathrm{C}(3),-0.231$; $\mathrm{C}(4), 0.246 ; \mathrm{C}(5),-0.251$ and $\mathrm{O}(5), 0.240 \AA$.

$$
\begin{equation*}
0.3447 X-0.1264 Y-0.9302 Z+6.760=0 \tag{1}
\end{equation*}
$$

The bond lengths and angles calculated using the coordinates of Table 5 are given in Table 6. The mean distances for the $\mathrm{C}-\mathrm{H}$ and $\mathrm{O}-\mathrm{H}$ bonds are 1.04 and $0.99 \AA$ and show no unusual departures from expected values (Sutton, 1965). The mean distances for the C-C and C-O bonds are 1.518 and $1.428 \AA$ respectively, which agree well with values observed in other structures (Berman, Chu \& Jeffrey, 1967). The variations of the $\mathrm{C}-\mathrm{O}$ bonds from the mean are, in general, greater than those displayed by the C-C bonds and for the sequence $\mathrm{C}(5)-\mathrm{C}(5), \mathrm{O}(5)-\mathrm{C}(1)$ and $\mathrm{C}(1)-\mathrm{O}(1)$ the differences are $+0.011,-0.010$ and $-0.023 \AA$. Similar variations in the bond lengths have been observed in a number of the other methyl pyranosides (Berman, Chu
\& Jeffrey, 1967; Berman \& Kim, 1967; Gatehouse \& Poppleton, 1970, 1971).
The shortening of the axial anomeric bond, $\mathrm{C}(1)-$ $O(1)$, is less pronounced than with equatorial configurations. However, where there is rigid group thermal motion the apparent shortening of a bond as a result of librational motion will be a function of radial distance of the atoms involved from the librational centre of the molecule. An axially disposed atom, therefore, at $\mathrm{C}(1)$ for example, will be less affected by libration than an equatorial substituent to the same atom, provided the librational centre is not displaced greatly from the centre of mass by forces such as strong intermolecular hydrogen bonding. As the observed variations of these bonds from the mean are small it is possible that they are manifestations of thermal motion rather than anything of structural significance.
The methyl α-galactoside molecule has a short $\mathrm{C}(5)-$ $\mathrm{C}(6)$ bond $(-0.011 \AA)$ but as the change is only 2σ it is not considered significant. On the other hand a similar short $\mathrm{C}(5)-\mathrm{C}(6)$ bond has been observed in methyl α-d-altropyranoside (Gatehouse \& Poppleton, 1971).
Bond angles, Table 6, between the heavier atoms have a mean value of 110.8° from which those associated with $\mathrm{C}(5)$ show the maximum deviation. The final difference electron density map gave no anomalous residual density in the region and the distortion of this part of the molecule appears genuine subject to the

Table 5. Atomic positional and thermal parameters
Terms are $\times 10^{4}$. Temperature factor expression is

$$
\exp \left[-2 \pi^{2}\left(U_{11} a^{* 2} h^{2}+U_{22} b^{* 2} k^{2}+U_{33} c^{* 2} l^{2}+2 U_{12} a^{*} b^{*} h k+2 U_{13} a^{*} c^{*} h l+2 U_{23} b^{*} c^{*} k l\right)\right]
$$

conditions mentioned above. The angles at the two ether oxygen atoms, $O(1)$ and $O(5)$, are 113.5 and 113.0° respectively, and therefore also greater than the mean but consistent with values found for other sugars (Jeffrey \& Rosenstein, 1964). Angles involving hydrogen atoms range between 101 and 114° with a mean of 108°. The angle $\mathrm{HO}\left(W^{\prime}\right)-\mathrm{O}(W)-\mathrm{HO}\left(W^{\prime \prime}\right)$ is 103° which agrees well with the value of $104 \cdot 5^{\circ}$ in an isolated water molecule as well as with those observed in a variety of crystalline hydrates (Hamilton \& Ibers, 1968).

Conformation angles in the pyranose ring range between $52 \cdot 1$ and $61 \cdot 6^{\circ}$ which by comparison with the idealized ring angle range of $55 \cdot 8$ to 61.7° (Kim \& Jeffrey, 1967) suggests some distortion of the ring. The idealized ring is one in which the $\mathrm{C}-\mathrm{C}$ bonds are 1.525 \AA, and $\mathrm{C}-\mathrm{O}$ bonds are $1.430 \AA$ and the valence angles for the carbon and ring oxygen atoms are 109.5 and 113.3°; thus the bonds $\mathrm{C}(1)-\mathrm{C}(2)$ and $\mathrm{C}(4)-\mathrm{C}(5)$ must be coplanar. The ring distortion in the present structure is revealed in the bonds $\mathrm{O}(5)-\mathrm{C}(1)$ and $\mathrm{C}(3)-\mathrm{C}(4)$ being
coplanar to less than $0.001 \AA$. The remaining atoms $C(2)$ and $C(5)$ are out of the plane by 0.638 and 0.688 \AA respectively. The plane equation is given by (2).

$$
\begin{equation*}
0.1856 X+0.1475 Y-0.9715 Z+6.074=0 \tag{2}
\end{equation*}
$$

The hydrogen bonding scheme, Fig. 3 , is unusual in the variety of bonding arrangements which are displayed and comprises two more or less independent systems linked via a bifurcated hydrogen bond. The appropriate oxygen-oxygen and oxygen-hydrogen approach distances with angles at the hydrogen positions are given in Table 7.
The first of the systems involves $\mathrm{O}(2), \mathrm{O}(3), \mathrm{O}(4)$ and $O(5)$: $O(5)$ acts as a single acceptor, $O(4)$ as a single donor, $O(3)$ as an acceptor of two bonds and donor of one, and $\mathrm{O}(2)$ as a donor but also it is an acceptor in one arm of the bifurcated bond. An interesting feature of this region of the crystal is the participation of the ring oxygen atom of the glycoside in a hydrogen bond; thus the $\mathrm{O}(3)$ atom donates to atom $\mathrm{O}(5)$ of an equiv-

Table 6. Bond lengths and angles
Bond lengths

Bond lengths							
		$\mathrm{C}(1)-\mathrm{C}(2)$	$1.525 \AA$	$\mathrm{HC}(1)-\mathrm{C}$		$0.96 \AA$	
		$\mathrm{C}(2)-\mathrm{C}(3)$	1.518	HC(2) - C		1.03	
		C(3)-C(4)	1.514	$\mathrm{HC}(3)-\mathrm{C}$		$1 \cdot 16$	
		C(4)-C(5)	1.528	$\mathrm{HC}(4)$ - C		$1 \cdot 13$	
		C(5)-C(6)	1.507	$\mathrm{HC}(5)-\mathrm{C}$		1.08	
				$\mathrm{HC}\left(6^{\prime}\right)-\mathrm{C}$		1.03	
		$\mathrm{O}(1)-\mathrm{C}(1)$	1.405	$\mathrm{HC}\left(6^{\prime \prime}\right)$ - C		1.02	
		$\mathrm{O}(1)-\mathrm{C}(7)$	1.437	$\mathrm{HC}\left(7^{\prime}\right)-\mathrm{C}$		0.96	
		$\mathrm{O}(2)-\mathrm{C}(2)$	1.419	$\mathrm{HC}\left(7^{\prime \prime}\right)-\mathrm{C}$		0.98	
		$\mathrm{O}(3)-\mathrm{C}(3)$	$1 \cdot 446$	$\mathrm{HC}\left(7^{\prime \prime \prime}\right)-\mathrm{C}$		1.00	
		$\mathrm{O}(4)-\mathrm{C}(4)$	1.433				
		$\mathrm{O}(5)-\mathrm{C}(1)$	1.418	HO(2)	(2)	0.89	
		$\mathrm{O}(5)-\mathrm{C}(5)$	1.439	$\mathrm{HO}(3)-$	(3)	1.06	
		$\mathrm{O}(6)-\mathrm{C}(6)$	1.427	$\mathrm{HO}(4)$	(4)	0.92	
				HO(6)	(6)	0.95	
		$\mathrm{HO}\left(W^{\prime}\right)-\mathrm{O}(W)$	1.04	$\mathrm{HO}\left(W^{\prime \prime}\right)$	(W)	1.06	
Bond angles							
Central atom	i	j	$\alpha_{i j}$	Central atom	i	j	$\alpha_{i j}$
C(1)	C(2)	$\mathrm{O}(1)$	107.8°	C (2)	C(3)	C(1)	110.7°
	$\mathrm{O}(1)$	$\mathrm{O}(5)$	111.3		$\mathrm{O}(2)$	C(1)	108.8
	$\mathrm{O}(1)$	$\mathrm{HC}(1)$	$110 \cdot 8$		$\mathrm{O}(2)$	$\mathrm{C}(3)$	$110 \cdot 6$
	$\mathrm{O}(5)$	HC(1)	109.9		HC(2)	$\mathrm{C}(1)$	$112 \cdot 1$
	C(2)	HC(1)	$105 \cdot 7$		$\mathrm{HC}(2)$	C(3)	101.3
	C(2)	$\mathrm{O}(5)$	$111 \cdot 2$		$\mathrm{HC}(2)$	$\mathrm{O}(2)$	113.2
C(3)	C(4)	$\mathrm{C}(2)$	$111 \cdot 3$	C(4)	$\mathrm{C}(5)$	C(3)	108.5
	$\mathrm{O}(3)$	C(2)	109.1		$\mathrm{O}(4)$	C(3)	$110 \cdot 8$
	$\mathrm{O}(3)$	C(4)	109.9		$\mathrm{O}(4)$	C(5)	107.6
	$\mathrm{HC}(3)$	$\mathrm{C}(2)$	$104 \cdot 8$		HC(4)	C(3)	$107 \cdot 8$
	HC(3)	C(4)	113.8		$\mathrm{HC}(4)$	C(5)	108.1
	HC(3)	$\mathrm{O}(3)$	$107 \cdot 6$		$\mathrm{HC}(4)$	$\mathrm{O}(4)$	113.8
C(5)	$\mathrm{C}(6)$	C(4)	$113 \cdot 5$	C(6)	O (6)	$\mathrm{C}(5)$	$111 \cdot 8$
	$\mathrm{O}(5)$	C(4)	$109 \cdot 8$		$\mathrm{HC}\left(6^{\prime}\right)$	C(5)	$112 \cdot 9$
	O (5)	C(6)	107.4		$\mathrm{HC}\left(6^{\prime}\right)$	O(6)	$108 \cdot 4$
	$\mathrm{HC}(5)$	C(4)	112.5		$\mathrm{HC}\left(6^{\prime}\right)$	HC(6)	112.3
	$\mathrm{HC}(5)$	C(6)	101.8		$\mathrm{HC}\left(6^{\prime \prime}\right)$	$\mathrm{C}(5)$	104.5
	$\mathrm{HC}(5)$	$\mathrm{O}(5)$	111.6		$\mathrm{HC}\left(6^{\prime \prime}\right)$	O(6)	$106 \cdot 8$
C(7)	$\mathrm{O}(1)$	$\mathrm{HC}\left(7^{\prime}\right)$	111.8	$\mathrm{O}(1)$	$\mathrm{C}(1)$	$\mathrm{C}(7)$	113.0
	$\mathrm{O}(1)$	$\mathrm{HC}\left(7^{\prime \prime}\right)$	$105 \cdot 0$	$\mathrm{O}(2)$	C(2)	HO(2)	$108 \cdot 6$
	$\mathrm{O}(1)$	$\mathrm{HC}\left(7^{\prime \prime \prime}\right)$	$109 \cdot 8$	$\mathrm{O}(3)$	C(3)	$\mathrm{HO}(3)$	$103 \cdot 9$
	$\mathrm{HC}\left(7^{\prime}\right)$	$\mathrm{HC}\left(7^{\prime \prime}\right)$	113.4	$\mathrm{O}(4)$	C(4)	HO(4)	$104 \cdot 1$
	$\mathrm{HC}\left(7^{\prime \prime}\right)$	$\mathrm{HC}\left(7^{\prime \prime \prime}\right)$	$109 \cdot 6$	$\mathrm{O}(5)$	C(1)	$\mathrm{C}(5)$	$113 \cdot 8$
	$\mathrm{HC}\left(7^{\prime \prime \prime}\right)$	$\mathrm{HC}\left(7^{\prime}\right)$	$107 \cdot 0$	$\mathrm{O}(6)$	C(6)	$\mathrm{HO}(6)$	$104 \cdot 5$
				$\mathrm{O}(W)$	$\mathrm{HO}\left(W^{\prime}\right)$	$\mathrm{HO}\left(W^{\prime \prime}\right)$	$102 \cdot 9$

alent molecule translated one unit-cell in the x direction. The bonding approach is from an axial direction with respect to the plane of the molecule, and adjudged on the criteria of short $\mathrm{OH} \cdots \mathrm{O}$ distance and linearity of the atomic arrangement is the strongest bond present.

The second system is confined to the water molecule and the primary hydroxyl groups. The sequence $\mathrm{O}(W)-$ $\mathrm{HO}\left(W^{\prime}\right) \cdots \mathrm{O}(6)-\mathrm{HO}(6) \cdots \mathrm{O}^{\prime}(W)-\mathrm{HO}^{\prime}\left(W^{\prime}\right) \cdots \mathrm{O}^{\prime}(6)-$ $\mathrm{HO}^{\prime}(6) \cdots \mathrm{O}(W)$ forms a firmly bound left-handed spiral system parallel to the x axis. The two oxygen-oxygen approach distances are significantly different but

Table 7. Hydrogen bonding distances and angles

* Oxygen-oxygen intermolecular distances less than $3.25 \AA$

$\mathrm{O}(W a) \cdots \mathrm{O}(6 c)$	$2.684 \AA$	$\mathrm{O}(4) \cdots \cdots \mathrm{O}(3 e)$	$2.903 \AA$
$\mathrm{O}(3) \cdots \cdots \mathrm{O}(5)$	2.706	$\mathrm{O}(W a) \cdots \mathrm{O}(1 e)$	2.880
$\mathrm{O}(6 b) \cdots \cdots \mathrm{O}(W d)$	2.744	$\mathrm{O}(W a) \cdots \mathrm{O}(2 e)$	3.018
$\mathrm{O}(2) \cdots \cdots \mathrm{O}(3 a)$	2.807		

Hydrogen contact distances and angles

	Distance	Angle
$\mathrm{O}(W)-\mathrm{HO}\left(W^{\prime}\right) \cdots \mathrm{O}(6)$	$1.76 \AA$	155°
$\mathrm{O}(3)-\mathrm{HO}(3) \cdots \mathrm{O}(5)$	1.66	172
$\mathrm{O}(6)-\mathrm{HO}(6)$	$\cdots \mathrm{O}(W)$	1.75
$\mathrm{O}(2)-\mathrm{HO}(2)$	$\cdots \mathrm{O}(3)$	1.97
$\mathrm{O}(4)-\mathrm{HO}(4) \cdots(3)$	$2 \cdot 03$	158
$\mathrm{O}(W)-\mathrm{HO}\left(W^{\prime \prime}\right) \cdots \mathrm{O}(1)$	$2 \cdot 07$	159
$\mathrm{O}(W)-\mathrm{HO}\left(W^{\prime \prime}\right) \cdots \mathrm{O}(2)$	2.12	131

* The letters refer to the symmetry elements to be applied to the coordinates listed in Table 5.

a	$-x$	$\frac{1}{2}+y$	$\frac{1}{2}-z$
b	$\frac{1}{2}+x$	$-\frac{1}{2}+y$	$\frac{1}{2}-z$
c	x	$1 \frac{1}{2}-y$	$1-z$
d	$\frac{1}{2}-x$	$-1+y$	z
e	$-x$	$-\frac{1}{2}+y$	$\frac{1}{2}-z$

Fig. 3. Hydrogen bonding scheme.
the strengths of the two bonds are probably very similar. Thus the longer distance of $2.74 \AA$ involves the shorter $\mathrm{OH} \cdots \mathrm{O}$ distance with a more linear configuration.

The bifurcated bond involves $\mathrm{HO}\left(W^{\prime \prime}\right)$, and $\mathrm{O}(1)$ and $\mathrm{O}(2)$ of a single residue. The associated $\mathrm{OH} \cdots \mathrm{O}$ distances of 2.07 and $2 \cdot 12 \AA$ are less than $2 \cdot 6 \AA$ which corresponds to van der Waals contact (Pauling, 1960). The bonds have pronounced non-linearity; the shorter contact is associated with the greater bond angle suggesting that in this case also, the interactions, although weak, are of approximately equal strength. The oxygen atoms $\mathrm{O}(W), \mathrm{O}(1), \mathrm{O}(2), \mathrm{O}^{\prime}(6)$ and $\mathrm{O}^{\prime \prime}(6)$ lie very nearly in a plane given by equation (3).

$$
\begin{equation*}
0.6596 X+0.6969 Y-0.2816 Z-2.254=0 \tag{3}
\end{equation*}
$$

The distorted square-planar arrangement about the water group contrasts with the tetrahedral arrangement found in rhamnose monohydrate (McGeachin \& Beevers, 1957), α-glucose monohydrate (Killean, Ferrier \& Young, 1962) and β maltose monohydrate (Quigley, 1969). It is interesting to note, however, that the midpoint of the line joining $\mathrm{O}(1)$ and $\mathrm{O}(2)$, which are the two atoms associated with $\mathrm{HO}\left(W^{\prime \prime}\right)$ and the bifurcated bond, together with $\mathrm{O}^{\prime}(6)$ and $\mathrm{O}^{\prime \prime}(6)$ form a threefold planar array about the water molecule in which $\mathrm{HO}^{\prime}(6)$ and $\mathrm{HO}^{\prime \prime}(6)$ also participate. Such a threefold planar environment has been observed in a number of hydrated crystals although it is less common than the tetrahedral arrangement (Clark, 1963). The coordinates and perpendicular distances of selected atoms from the plane are given in Table 8.

Table 8. Hydrogen bonded planar arrangement around the water molecule

Plane equation $0.6596 X+0.6969 Y-0.2816 Z-2.2537=P$				
	X	Y	Z	P
$\mathrm{O}(W)$	6.525	0.970	9.723	-0.012
$\mathrm{O}^{\prime}(6)$	4.442	2.598	8.988	-0.045
$\mathrm{O}^{\prime}(1)$	8.330	-1.147	8.978	-0.087
$\mathrm{O}^{\prime}(2)$	6.794	-0.250	6.976	0.088
$\mathrm{O}^{\prime \prime}(6)$	7.507	1.145	12.215	0.056
$\mathrm{HO}(W 1)$	5.619	1.342	9.365	-0.250
$\mathrm{HO}(W 2)$	6.743	0.187	9.046	-0.223
$\mathrm{HO}(6)$	3.955	2.745	9.806	-0.474
$\mathrm{HO}^{\prime \prime}(6)$	7.050	0.998	11.396	-0.118

The reason for the unusual melting point behaviour of methyl α-D-galactopyranoside monohydrate remains unresolved. However it is worth noting again that the water molecule is tightly hydrogen bonded to the primary hydroxyl group only, in an unbroken channel parallel to [100], suggesting that it provides a pathway for movement of the water into and out of the structure. The packing changes, which must occur, do not appear to alter extensively the hydrogen bonding pattern, provided it is assumed that the melting point is a valid criterion. If this is the case, then there are several possibilities for packing of the primary hydroxyl groups of which the trans-gauche conformation, with $\mathrm{O}(6)$ trans
to $\mathrm{O}(5)$ and gauche to $\mathrm{C}(4)$ is favoured. This conformation has not been found with monosaccharides in which $C(4)$ is equatorial to the ring, presumably because of interaction between $O(4)$ and $O(6)$. Where, as in galactose derivatives, $\mathrm{O}(4)$ is axial, such a conformation is more likely, with the gauche-gauche arrangement the least energetically favoured, for the same reason.

We wish to thank Dr J. L. Frahn of the C.S.I.R.O. Division of Biochemistry and General Nutrition and Mr K. J. Harrington of the C.S.I.R.O. Division of Forest Products for providing samples of methyl α-D-galactopyranoside monohydrate. Also we would like to express our appreciation to Dr A. McL. Mathieson of the C.S.I.R.O. Division of Chemical Physics for encouragement and making available laboratory space and facilities.

References

Berman, H. M., Chu, S. S. C. \& Jeffrey, G. A. (1967). Science, 157, 1576.
Berman, H. M. \& Kim, S. H. (1967). Acta Cryst. B24, 897.
Busing, W. R., Martin, K. O. \& Levy, H. A. (1962). ORFLS, A Fortran Crystallographic Least Squares Program. ORNL-TM-305, Oak Ridge National Laboratory, Tennessee.
Clark, J. R. (1963). Rev. Pure Appl. Chem. 13, 50.
Cox, E. G., Goodwin, T. H. \& Wagstaff, A. J. (1935). J. Chem. Soc. p. 978.

Frahn, J. L. \& Mills, J. A. (1965). Aust. J. Chem. 18, 1303.
Gatehouse, B. M. \& Poppleton, B. J. (1970). Acta Cryst. B26, 1961.
Gatehouse, B. M. \& Poppleton, B. J. (1971). In the press.
Hall, S. R. (1968). Crystallographic Programs for the PDP-6 Computer. University of Western Australia.
Hamlton, W. C. \& Ibers, J. A. (1968). Hydrogen Bonding in Solids, p. 218. New York: Benjamin.
International Tables for X-ray Crystallography (1962). Vol. III, Table 3.3.1A. Birmingham: Kynoch Press.
Jeffrey, G. A. \& Rosenstein, R. D. (1964). Advanc. Carb. Chem. 19, 7.
Johnson, C. K. (1965). ORTEP, Fortran Ellipsoid Plot Program for Crystal Structure Illustrations. ORNL 3794, Oak Ridge National Laboratory, Tennessee.
Karle, J. \& Hauptman, H. (1956). Acta Cryst. 9, 635.
Killean, R. C. G., Ferrier, W. G. \& Young, D. W. (1962). Acta Cryst. 15, 911.
Kim, S. H. \& Jeffrey, G. A. (1967). Acta Cryst. 22, 537.
McGeachin, H. McD. \& Beevers, C. A. (1957). Acta Cryst. 10, 227.
Oh, Y. L. \& Maslen, E. N. (1968). Acta Cryst, B24, 883.
Pauling, L. (1960). The Nature of the Chemical Bond, 3rd. ed. p. 260. Ithica, New York: Cornell Univ. Press.
Quigley, G. J. (1969). Ph. D. Thesis. State University College of Forestry, Syracuse, New York.
Sundaralingam, M. (1968). Biolymers, 6, 189.
Sutton, L. E. (1965). Tables of Interatomic Distances and Configuration in Molecules and Ions. Special Publication No. 18. London: The Chemical Society.
White, J. C. B. (1965). Melbourne University Fourier Program MUFR3. See Rollett, J. S. (1961). In Computing Methods and the Phase Problem in X-ray Crystal Analysis, Ed. Pepinsky, Robertson and Speakman, p. 87. Oxford: Pergamon Press.

[^0]: * Permanent address: Division of Forest Products, C.S.I.R.O., South Melbourne, Victoria 3205, Australia.

